

Влияние длительного воздействия рабочих параметров реактора ВВЭР-440 на структуру и фазовый состав материала элементов ВКУ

Е.А. Кулешова, Б.А. Гурович, А.С. Фролов, Д.А. Мальцев, С.В. Федотова, И.В. Федотов, НИЦ «Курчатовский Институт»

Б.З. Марголин, А.И. Минкин, А.А. Сорокин НИЦ «Курчатовский институт» - ЦНИИ КМ «Прометей»

Существующие проблемы

Изучение взаимосвязей изменения структуры и механических свойств имеет значимую важность, особенно при рассмотрении вопроса безопасной эксплуатации реакторов при продленном сроке службы.

Наиболее информативными и полезными являются исследования образцов, вырезанных из материала ВКУ, облученных непосредственно в самом реакторе ВВЭР. На основе изучения изменений структуры и механических свойств данных образцов можно делать заключения о безопасности продления срока эксплуатации реактора до 60 лет, либо принимать меры по разработке методов ликвидации изменений в материале, вызванных облучением.

В работе для оценки степени деградации структуры, ответственной за изменение свойств элементов ВКУ из стали 08Х18Н10Т, были исследованы элементы ВКУ энергоблока №3 НВОАЭС, выведенного их эксплуатации.

Исследованные материалы

× c

Номер	Доза	Т	Элемент	Место вырезки
трепана	облучения	облучения	конструкции	
	, сна	,°C		
27	47,2	270	элемент трепана, вырезанного из	IV Г (увеличено)
25	15,7	270	выгородки корзины выемной после облучения в условиях реактора ВВЭР-440 в контакте с водой	retransi N25, 25, 27 supprepriorer, NO
				II B-B
38	15,7	300-320	элемент трепана, вырезанного из сегмента корзины выемной после облучения в условиях реактора ВВЭР-440 без контакта с водой	
КНИ ВВЭР- 440	7,9	270	Чехол канала	
КНИ ВВЭР- 1000	12	300-320	измерительного	~1 м ~12-13 м Монтажная часть Погружаемая часть

Фазовый состав стали 08Х18Н10Т под воздействием

эксплуатационных факторов

Исходное состояние:

- γ твердый раствор на основе Fe,Cr, Ni
- карбиды титана с г.ц.к.-решеткой
- δ-феррит при определенном соотношении Cr/Ni

Облучение:

- образование и развитие вакансионной пористости;
- образование дислокационных петель;
- выделение карбидов/карбонитридов титана TiC; -выделения G-фазы (Ni-Si-Ti);
- выделения ү'-фазы (Ni-Al-Si-Cu)
- выделения α-фазы.

Методы исследования:

Объект исследования	Используемые методы для определения
Дислокационные петли	TEM
Выделения (размером 5÷30 нм)	TEM, SEM
Выделения (размером < 5 нм)	APT
Вакансионные поры	TEM

Структурная диаграмма Шеффлера для определения фазового состава аустенитных сталей

A3T: Cameca LEAP 4000 HR

Изготовление образцов

EDX- карты распределения элементов

Микротемплет из фрагмента КНИ ВВЭР. ТЕМ

0,005

6,4±1,1

7,6±1,5

 $2,2\pm0,1$

8±2

24

10

300-

320

1000

 125 ± 25

 $3,5\pm0,5$

1,6±0,1

 $1,2\pm0,2$

Микротемплет из фрагмента КНИ ВВЭР. АЗТ

3D-карты распределения элементов в образцах КНИ ВВЭР-440 (а) и ВВЭР-1000 (б)

	E arra /T		G-фаза		ү'- фаза			
	°C	d, нм	ρ, 10 ²³ м ⁻³	Состав, ат%	d, нм	ρ, 10 ²³ m ⁻³	Состав, ат%	
ввэр-440	7,9/ 270	1.7	6.3±1.3	Ni=71,5 Ti=7,5 Si =30	1.2	9.3±1.1	Ni=63 Ti=11,5 Si=10 Al=9 Cu=6,5	
ВВЭР- 1000	12-14/ 300-320	2.3	3.8±3.0	Ni=61,5 Ti=11 Si=27.5	1.5	13.3±1.5	Ni=57,5 Ti=14,5 Si=6 Al=15 Cu=7	

Элементы трепанов из выгородки ВВЭР-440 Доза облучения: №25 -15,7 сна; №27 – 47,2 сна, Т_{обл}=270 °С

ЕFTЕМ-карты распределения элементов

Элементы трепанов №№ 25, 27 из выгородки ВВЭР-440. ТЕМ

Элементы трепанов №№ 25, 27 из выгородки ВВЭР-440. АЗТ

3D-карты распределения элементов в образцах №25(а) и 27(б) из выгородки ВВЭР-440

	E ava /T		G- фаза		ү'- фаза			
Трепан	г,сна/1, °С	d, нм	ρ, 10 ²³ м ⁻³	Состав, ат%	d, нм	ρ, 10 ²³ m ⁻³	Состав, ат%	
25	15,7/ 270	1.6	13.3±0.8	Ni=67 Ti=8 Si =25	1.3	9.7±1.7	Ni=64 Ti=10,5 Si=8,5 Al=9 Cu=8	
27	47,2/ 270	1.6	13.2±6.9	Ni=63 Ti=13 Si =24	1.3	9.1±1.4	Ni=62 Ti=11 Si=7 Al=11,5 Cu=8,5	

Элемент трепана №38 из корзины выемной ВВЭР-440 Доза облучения -15,6 сна, Т_{обл}=300-320 °С

Размер зерна 80-100 µm

Карбиды/карбонитриды титана

SEM-изображение

ЕFTEМ-карты распределения элементов

Элемент трепана № 38 из корзины выемной ВВЭР-440. ТЕМ

3D-карты распределения элементов (а) в образцах из корзины выемной ВВЭР-440 и распределение элементов в области, содержащей кластеры G-фазы (б) и ү'-фазы (в)

Ni

Cu Al Ti

Si

Трепан	F cuo/		G-ф аза		γ '- φ аза			
	T, °C	d, нм	р, 10 ²³ м ⁻³	Состав, ат%	d, HM	ρ, 10 ²³ м ⁻³	Состав, ат%	
38	15,6/ 300-320	3 (2÷10)	4.5±0.9	Ni=75 Ti=4 Si =21	1.2	8.3±3.1	Ni=63 Ti=10 Si=15,5 Al=7 Cu=4,5	

Сравнение параметров радиационно-индуцированных элементов структуры

Треп		TiC		G-фаза		Поры			Дисл. петли Франка		"Black dots"		РИС	
ан	a/T,	d,	ρ,	d,	ρ,	d,	ρ,	Распуха	d,	ρ,	d,	ρ,	Ni,	Cr,
	°C	НМ	10 ¹⁹ м ⁻³	НМ	10 ²³ м ⁻³	НМ	10 ²³ м ⁻³	ние, %	НМ	10 ²² м ⁻³	НМ	10 ²² м ⁻³	ат%	ат%
25	15,7/	25+5	2213	16	13.3	0,79	0,61	0,014	6,2	100	1,2	150	20	14
	270	<u>23</u> 23		1.0	±0.8	±0,02	±0,15	±0,004	±0,2	±12	±0,1	±17	20	14
27	47,2/	11,8	380	16	13.2	0,75	1,1	0,015	7,2	80	1,6	140	41	6
21	270	±0,5	±40	1.0	±6.9	±0,02	±0,2	±0,003	±0,2	±20	± 0,1	±30	41	O
	15 ()					1,57	0,37	0,008						
20	15,0/	30	25		4.5	±0,03	±0,7	±0,002	6,8	100	1,3	140	17	15
30	300-	±5	±3	2÷10	±0.9	6,6	0,07	0,19	±0,4	±20	±0,1	±20	1/	15
	320					±0,4	±0,14	±0,4						
КНИ-	7,9/	40.70	5 5 1 0 9	17	6.3	0,82	2,0	0,006±	6,7	10	2,4	16	17	12
440	270	40-70	5.5±0.8	1./	±1.3	±0,05	±0,7	0,001	±0,4	±2	±0,1	±3	1/	15
	12-													
КНИ-	14/	125	0.35	• •	3.8	1,6	1,2	$0,027\pm$	6,4	7,6	2,2	8	24	10
1000	300-	±25	±0,05	2.3	±3.0	±0,1	±0,2	0,005	±1,1	±1,5	±0,1	±2	24	10
	320													

Увеличение повреждающей дозы с ~8 до ~47 сна приводит к:

- росту плотности радиационных дефектов (как петель Франка, так и "Black dots") с выходом на насыщение при ~(10-15) сна.
- -существенному росту плотности карбидов/карбонитридов титана с уменьшением их размеров
- существенному изменению РИС: увеличению концентрации Ni и снижению концентрации Cr

Повышение температуры облучения до (300-320)°С способствовало:

- увеличению размеров частиц G-фазы и снижению плотности выделений;
- наличию бимодального распределения пор по размерам;
- некоторому увеличению распухания за счет значимого увеличения размера крупных пор;

Состав радиационно-индуцированных выделений (карбидов, кластеров ү'и G-фазы) не зависит от дозы и Тобл

В пределах изменения температуры (270-320) °С закономерного изменения РИС не обнаружено

Вклад радиационно-индуцированных элементов структуры в изменение предела текучести исследованных образцов ВКУ

Трепан	F,сна ∕T, °С	Экспериментальные значения (Тисп 20°С)			$lpha * \cdot \sqrt{ ho \cdot d}$, 10 ⁶ м ⁻¹				
		G₀₂ МПа	σ_В МПа	δ _p	TiC	G+γ'	Поры	Дисло- каци- онные петли	
38	15,6/ 300-320	н/о	н/о	н/о	2,2	6,8	14,4	37,5	
27	47,2/ 270	1022	1062	0,8	5,4	8,3	23,6	37,0	
25	15,7/ 270	959	995	0,6	1,9	8,2	13,8	36,3	
КНИ-440	7,9/ 270	894	952	0,74	1,4	6,6	10,7	13,6	
КНИ-1000	12-14/ 300-320	870	н/о	н/о	0,5	7,4	9,6	19,2	

* α – по литературным данным

$$\Delta \boldsymbol{\sigma} = \boldsymbol{\alpha} \cdot \boldsymbol{M} \cdot \boldsymbol{G} \cdot \boldsymbol{b} \cdot \sqrt{\boldsymbol{\rho} \cdot \boldsymbol{d}}$$

M – фактор Тейлора, G – модуль Юнга, b – модуль вектора Бюргерса. ρ и d – плотность дефектов и их средние размеры, прочность барьера выражается константой α .

Заключение

Для исследованной стали 08Х18Н10Т элементов ВКУ энергоблока №3 НВОАЭС, выведенного их эксплуатации, характерно наличие пластинчатых выделений δ-феррита (до 5%), расположенных преимущественно вдоль большеугловых границ зерен.

Показано, что с увеличением повреждающей дозы от ~8 до ~47 сна наблюдается:

- рост плотности радиационных дефектов (как петель Франка, так и "Black dots") с выходом на насыщение при ~(10 -15) сна.

- существенный рост плотности карбидов/карбонитридов титана с уменьшением их размеров;

-существенное изменение РИС: увеличение концентрации Ni и снижение концентрации Cr

- дозовые зависимости плотности, размеров и составов радиационно-индуцированных кластеров γ' и G-фазы не обнаружены.

Повышение температуры облучения от ~270 до (300-320)°С привело к:

- увеличению размеров G-фазы и снижению плотности выделений;
- наличию бимодального распределения пор по размерам;

- некоторому увеличению распухания за счет значимого увеличения размера крупных пор;

-в пределах изменения температуры (270-320) °С закономерного изменения РИС не обнаружено.

Вклад радиационно-индуцированных элементов структуры в изменение предела текучести. Показана закономерная дозовая зависимость увеличения предела текучести. При этом наибольший вклад вносят дислокационные петли. Однако при малых процентах распухания в исследованных образцах до повреждающей дозы ~47 сна критичных изменений механических характеристик не наблюдается.

Спасибо за внимание!

Влияние температуры и длительности отжига на распухание

а – зависимость распухания от температуры и времени отжига

б, в, г - светлопольные ТЕМ-изображения пор в процессе отжигов

Образование зон, обедненных порами при отжиге

а – зависимость объемной доли G-фазы от температуры отжига (10ч)

б, в, г – темнопольные ТЕМ-изображения G-фазы в процессе отжигов

22

Влияние температуры отжига на долю α-фазы

б, в, г – SEM-изображения α -фазы в процессе отжигов

23

Влияние параметров отжига на восстановление механических свойств ВКУ

Влияние температуры отжига на механические свойства

При температуре отжига **900°С** наблюдается **96%-возврат механических свойств** по отношению к значениям, характерным для стали X18H10T до облучения

Дозовая зависимость распухания и вклад в возврат предела текучести при отжиге радиационно-индуцированных структурных составляющих 25

Выводы

- Облучение элементов ВКУ водо-водяных энергетических реакторов из аустенитных сталей приводит к деградации их микроструктуры (образованию вакансионных пор, радиационных дефектов, вторичных фаз (G-фаза, α-фаза) радиационно-индуцированных сегрегаций) и резкому снижению эксплуатационных характеристик.
- Проведение отжига способствует восстановлению структурного состояния сталей и механических свойств, при этом исчезновение радиационных дефектов, вторичных фаз и радиационно-индуцированных сегрегаций наблюдается в температурном интервале 700-900°С, что способствует восстановлению механических характеристик на 96% при T=900°C.
- Восстановления пористости сталей до значений, близких к исходному состоянию, наблюдается только при температуре восстановительного отжига 1000°С.
- Для продления срока службы элементов **ВКУ** на второй ресурс (до суммарного срока службы **60 лет**) необходимо добиться снижения уровня пористости до значений, ниже установившейся стадии распухания, что достигается при температуре восстановительного отжига не ниже **1000°C**